随着电子设备和系统在现代社会中的广泛应用,电介质材料的重要性日益凸显。电介质材料是从变压器、输电线路到卫星关键组件的基础材料,其稳定性和可靠性必然的联系到通信、国防和商业系统的正常运行。然而,电介质击穿是导致这些系统失效的根本原因之一,但科学界对这一过程的理解还不完全。电介质击穿(ESD)是指电介质材料在受到足够高的电场时突然变得导电,导致破坏性的静电放电事件。ESD会在材料中留下类似闪电的树状损伤模式,这些永久性损伤痕迹被称为莱顿图(LFs)。尽管科学家已经对玻璃、环氧树脂、聚酰亚胺和聚乙烯等材料中的分支型LF进行了识别和研究,但对某些材料中常春藤型LF的存在和形成机制知之甚少。此外,虽然电气放电在纳秒尺度上发生已被广泛认可,但在较厚电介质材料中ESD的实际速度和通道形成机制仍未得到充分研究。
有鉴于此,马里兰大学Timothy W. Koeth教授团队在“Science”期刊上发表了题为“Dynamics of high-speed electrical tree growth in electron-irradiated polymethyl methacrylate”的最新论文。他们通过对两种不一样的电气树的电介质击穿通道传播动态做多元化的分析,进一步揭示了电介质击穿过程中的关键机制。研究之后发现,常春藤型放电模式的传播速度接近材料中光速的5%,这是固态材料中直接视觉观察到的最快物理现象之一。这一发现不仅揭示了电介质击穿理论中的空白,还为材料工程师提供了新的思路,以设计和制造更不易受静电放电影响的电介质材料,来提升现代电子、通信和国防系统的可靠性。
】1. 实验首次发现并揭示新型ESD模式本实验通过对空间电荷加载的PMMA进行高精度高速成像,首次揭示了全新的静电放电(ESD)模式——常春藤型放电模式。该模式的发现填补了现有电介质击穿理论中的空白。
常春藤型放电模式与传统的分支型放电模式存在非常明显差异。通过实验观察,发现常春藤型放电的通道形成速度超过10
航天器充电导致的ESD可导致非常严重损害,占所有卫星故障的一半以上。研究表明,这类ESD事件可由太阳耀斑、地磁暴以及长期暴露于太阳能粒子引起。理解这些机制对于保障作者日常依赖的通信、国防和商业系统的持续功能至关重要。
通过使用千兆赫的帧率的高速成像技术,本实验不仅精确测量了电气树通道的形成速度,还证实了现有LF通道形成理论中的重大缺陷。该技术的应用为进一步探索电介质击穿现象提供了强有力的工具。
鉴于常春藤型放电模式的发现,本实验提出了新假设,即如果该击穿模式纯粹由电磁驱动,那么在任何有充足高空间电荷密度的聚合物中都应能观察到。未来的研究将进一步探讨材料的物理和化学结构对电介质击穿过程的影响,为更好地预测和设计抗冲击材料奠定基础。
】本文的研究成果为电介质材料的电击穿现象提供了新的视角,揭示了电介质击穿过程中存在的常春藤型电气树这一新模式。这一发现不仅填补了现有理论中的重要空白,还对电介质材料的设计和应用具有深远的影响。通过高速度成像技术,作者首次观察到常春藤型电气树的传播速度超过107米/秒,几乎达到材料中光速的5%。这一现象的发现挑战了传统的分支型电气树理论,表明电介质击穿的机制可能更为复杂,需要新的理论框架来解释。
:因作者学识有限,难免有所疏漏和错误,如有不科学之处,恳请读者在下方批评指正!
国药集团重庆医药设计院有限公司335.00万元采购化学合成仪,废气/废水处理机
AI驱动半导体向上 再议创新合作第二届半导体第三方分析检测生态圈战略大会召开
广西南亚热带农业科学研究所175.00万元采购离心机,核酸提取仪,TOC分析仪,超低温冰箱,培养箱,...
泰州医药高新技术产业开发区(泰州市高港区)疾病预防控制中心110.00万元采购离子色谱仪,气相色谱仪
1650万!上海科技大学硬X射线自由电子激光装置-自适应光学系统采购项目
4300万!上海科技大学硬X射线自由电子激光装置-大口径光学器件采购项目
创新引领 YOUNG帆起航——仪器信息网25周年 我们不一YOUNG!
东南大学崔铁军院士团队Nature子刊,基于二维可编程超表面的定向信息调制技术
Nature Protocols揭示纳米材料生物冠的秘密:从结构解析到应用前景!